
FALL 2024: MATH 790 EXAM 1

Throughout this exam, V will denote a vector space over the field F . Unless stated otherwise, we do not assume
that V is finite dimensional. Each problem is worth 10 points. You may use the Daily Update, your notes from class
or any homework you have done, but you may not use any other resources, including your book, any other
book, any information taken from the internet, nor may you consult with any students or professors, other than your
Math 790 professor. You may freely use basic linear algebra facts presented in a first course on linear algebra, but you
may not use any advanced linear algebra facts not presented in class. Please upload your solutions in pdf format
- and no other format - to Canvas by 5pm on Monday, October 7. Good luck on the exam!

1. Let K be a subfield of F . We can regard F as a vector space over K, using the addition in F as vector addition
and multiplication of elements in K times elements in F (via the given multiplication in F ) as scalar multiplication.
Note that any vector space V over F is automatically a vector space over K. Assume that V is finite dimensional
over F and F is finite dimensional as a vector space over K. Find and prove a formula that expresses dimK(V ) in
terms of dimF (V ) and dimK(F ). Hint: It might be helpful to first consider thet case K = R and F = C.

Solution. Let λ1, . . . , λn be a basis for the field F regarded as a vector space over the field K and v1, . . . , vm be a

basis for the vector space V over F . We will show that the set B := {λivj}1≤j≤m
1≤i≤n is a basis for V over K. Upon

doing so, it will follow that dimK(V ) = dimK(F ) · dimF (W ).
Now, take v ∈ V . Then we may write v = α1v1+ · · ·+αmvm, with each αi ∈ F . On the other hand, we may write

each αi = βi,1 · λ1 + · · ·+ βi,n · λn, with each βi,j ∈ K. Substituting these latter relations into the first equation, we
get

v = (β1,1λ1 + · · ·+ β1,nλn)v1 + · · ·+ (βm,1λ1 + · · ·+ βm,nλn)vm.

Expanding out this last identity we see that v =
∑

i,j βj,i · (λivj), which shows that the set B spans V over K.

Finally, to see that the set B is linearly independent over K, suppose we have a dependence relation
∑1≤j≤m

1≤i≤n γj,i ·
(λivj) = 0, with each γj,i ∈ K. Then, we may rewrite this equation as

0 = (γ1,1λ1 + · · ·+ γ1,nλn)v1 + · · ·+ (γm,1λ1 + · · ·+ γm,nλn)vm.

Note that the coefficients of the vi in this last equation belong to F . Thus,

0 = γ1,1λ1 + · · ·+ γ1,nλn = · · · = γm,1λ1 + · · ·+ γm,nλn,

since the vj are linearly independent over F . Since the λj are linearly independent over K, it follows that all γj,i are
zero, which gives what we want. The proof is now complete. □

2. Let W be a proper subspace of the vector space V . First prove that there exists a subspace U ⊆ V that is maximal
with respect to the property that W ∩ U = 0, and then show that V = W ⊕ U .

Solution. Let W be a subspace of V . We need to check that the hypotheses of Zorn’s Lemma apply to the set
S := {W ′ ⊆ V | W ′ is a subspace of V and W ∩W ′ = 0}. Note, the partial order on S is just inclusion of subspaces.
For this, we take a chain {W ′

i}i∈I in S, i.e., a totally ordered collection of subspaces {W ′
i} of V with W ∩W ′

i = 0, for
all i. To find an upper bound for the chain in S, we consider W ′

0 :=
⋃

i∈I W
′
i . As in class, a union of totally ordered

subspaces of V is a subspace of V , so W ′
0 is a subspace of V . Let x ∈ W ′

0 ∩W . Since x ∈ W ′
0, x ∈ W ′

i , some i. Thus,
x ∈ W ′

i ∩W = 0, since W ′
i ∈ S. Thus, W ′

0 ∩W = 0, so W ′
0 ∈ S. Therefore, W ′

0 is an upper bound in S for the given
chain. It follows from Zorn’s Lemma that S has a maximal element, say U .

To see that V = W
⊕

U , we just have to show V = W + U , since we already have W ∩ U = 0. Take v ∈ V . If
v ∈ U , then v ∈ W + U . Suppose v ̸∈ U . Then U0 := U + ⟨v⟩ is a subspace of V properly containing U , so, by the
maximality of U , U0 ∩W ̸= 0. Let 0 ̸= w ∈ U0 ∩W . Then w = u+ αv, for some u ∈ U , α ∈ F and w ∈ W . Notice
that α ̸= 0, otherwise, w would be a non-zero vector in W ∩ U . It follows that v = −1

α
(w − u), so that v ∈ W + U ,

as required. Thus, V = W + U , so V = W ⊕ U . □

3. Suppose dim(V ) equals n > 0. Prove there cannot exist a chain of subspaces (0) ⊊ W1 · · · ⊊ Wn ⊊ V . Conclude
that if U1 ⊆ U2 ⊆ U3 ⊆ · · · is an ascending chain of subspaces of V , then there exists n0 ≥ 1 such that Us = Un0 , for
all s ≥ n0. In particular, show that if T ∈ L(V, V ), there exists 1 ≤ r ≤ n such ker(T j) = ker(T r), for all j ≥ r.

Solution. The first two statement follow, since given subspaces A ⊆ B ⊆ V , A ⊊ B if and only if dim(A) < dim(B).
For the third statement, suppose kernel(T r) = kernel(T r+1), for some r ≥ 1. Then kernel(T r+j) = kernel(T r), for
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all j ≥ 1. To see this, induct on j. The case j = 1 is true by assumption. Suppose the result is true for j − 1.
We want to show kernel(T j) = kernel(T r). Take v ∈ kernel(T j), so that T j(v) = 0. Then T j−1(T (v)) = 0, so
T (v) ∈ kernel(T j−1). Thus, T (v) ∈ kernel(T r). Therefore T r(T (v)) = 0, so T r+1(v) = 0. By hypothesis, T r(v) = 0,
which is what we want. Now, because we cannot have more than n strict containment of subspaces in V , we must
have kernel(T r) = kernel(T r+1), for sone 1 ≤ r ≤ n. □

4. Using the ideas of the previous problem, show that if dim(V ) = n, and T ∈ L(V, V ), then V = ker(Tn)⊕ im(Tn).

Solution. We first show that for all j ≥ 1, image(T r+j) = image(T r) = · · · , for the r found in the previous problem
such that such that kernel(T r) = kernel(T r+j). For this, since kernel(T r+j) = kernel(T r), these spaces have the
same dimension. By the Rank Plus Nullity theorem, image(T r+j) and image(T r) have the same dimension. Since
image(T r+j) ⊆ image(T r), these subspaces must be equal.

Now, we note that kernel(Tn)∩ image(Tn) = 0. To see this, take v ∈ kernel(Tn)∩ image(Tn), so that Tn(v) = 0 and
v = Tn(v′), for some v′ ∈ V . Then 0 = Tn(v) = T 2n(v′), so that v′ ∈ kernel(T 2n) = kernel(T r) = kernel(Tn). Thus,
v = Tn(v′) = 0. To see that V = kernel(Tn) + image(Tn), take v1, . . . , vs a basis for kernel(Tn) and u1, . . . , ut a
basis for image(T ). By the Rank Plus Nullity Theorem, s+ t = n. If we show that v1, . . . , v2, u1, . . . , ut are linearly
independent, then they form a basis for V . Thus,

V = Span{v1, . . . , vs}+ Span{u1, . . . , ut} = kernel(Tn) + image(Tn),

which gives what we want. Suppose a1v1 + · · ·+ asv2 + b2u1 + · · ·+ btut = 0, for ai, bj ∈ F . Then

a1v1 + · · ·+ asvs = −b1u1 − · · · − btut.

This vector belongs to kernel(Tn)∩ image(Tn) = 0, so we have a1v1+ · · ·+asvs = 0 and 0 = −b1u1−· · ·−btut.. Since
the vi are linearly independent, each ai = 0 and since the uj are independent, each bj = 0. This shows v1, . . . , ut are
linearly independent, which is what we want. □

5. Let V be a vector space of dimension n over the field F .

(i) Prove that the vector spaces L(V, V ) and Mn(F ) are isomorphic.
(ii) Using the Cayley-Hamilton theorem for matrices, prove that χT (T ) = 0, for T ∈ L(V, V ).
(iii) For f(x) ∈ [x], with s the degree of f(x), prove that |xIs−C(f(x))| = f(x), where C(f(x)) is the companion

matrix of f(x). In other words χC(f(x))(x) = f(x).

Solution. For part (i), one can either note that each space in question has dimension n2, and then use the fact that
vector spaces of the same dimension are isomorphic, or one can explicitly exhibit an isomorphism. In the first case,
fix a basis B = {v1, . . . , vn} for V . Define Tij : V → V by Tij(vi) = vj and Tij(vk) = 0, for k ̸= i. One shows that
{Tij} is a basis for L(V, V ). Similarly, one defines Eij ∈ Mn(F ) to be the matrix with (i, j) entry equal to 1 and all
other entries equal to zero. Then {Eij} is a basis for Mn(F ). Both bases have n2 elements. In the second case one
defines ϕ : L(V, V ) → Mn(F ) by ϕ(T ) = [T ]BB and easily checks that ϕ is an isomorphism.

For (ii), let T ∈ L(V, V ), fix a basis B ⊆ V and set A := [T ]BB . Then, by definition, χA(x) = χT (x). To see that
χT (T ) = 0, we first need an observation: Suppose p(x) ∈ F [x]. Then [p(T )]BB = p([T ]BB). This observation follows
easily from two facts: [ST ]BB = [S]BB [T ]

B
B , for all S, T ∈ L(V, V ) and [aS + bT ]BB = a[S]BB + b[T ]BB , for all a, b ∈ F .

Thus,

0 = χA(A) = χT (A) = χT ([T ]
B
B) = [χT (T )]

B
B ,

which implies that χT (T ) = 0, since a linear transformation is zero, if it is zero on all elements of a basis.

For part (iii), set C := C(f(x)). Then χC(x) =

∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · 0 a0

−1 x 0 · · · 0 a1

0 −1 x · · · 0 a2

...
...

. . .
...

...
0 0 0 · · · −1 x+ an−1

∣∣∣∣∣∣∣∣∣∣∣
. Expanding along the first row,

we get

χC(x) = x ·

∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · 0 a1

−1 x 0 · · · 0 a2

0 −1 x · · · 0 a3

...
...

. . .
...

...
0 0 0 · · · −1 x+ an−1

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n+1a0 ·

∣∣∣∣∣∣∣∣∣
−1 x 0 · · · 0
0 −1 x · · · 0
...

...
. . .

...
0 0 0 · · · −1

∣∣∣∣∣∣∣∣∣ ,
where the determinant on the left is the determinant one calculates for the characteristic polynomial of C(g(x)),
for g(x) = xn−1 + an−1x

n−2 + · · · + a1, which, by induction on n is g(x). The determinant on the right is an
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(n − 1) × (n − 1) upper triangular matrix with -1 down the diagonal, and thus equals, (−1)n−1. It follows that
χC(x) = xg(x) + a0 = f(x), as required. □

6. Let W1, . . . ,Wn ⊆ V be subspaces and assume V = W1 + · · ·+Wn. Prove that there exists r ≤ n and subspaces
Ui1 ⊆ Wi1 , . . . , Uir ⊆ Wir such that V = Ui1

⊕
· · ·
⊕

Uir . Note: we are not assuming that V is finite dimensional.
Hint: Consider the n = 2 case first. Hint 2: This can be done using bases, but there is an easier way without
appealing to bases.

Solution. In order to prove that there exist subspaces U1 ⊆ W1, . . . , Un ⊆ Wn such that V = U1 ⊕ · · · ⊕ Un, we first
discard any redundant Wi. In other words, if some Wj ⊆ W1 + · · ·+Wj−1 +Wj+1 + · · ·+Wn, we may discard it and
take Uj = 0. Thus, after finitely many such steps, we may begin again (after a change in notation) and assume that
there are no redundancies, i.e., V is not the sum of any proper subset of the W ′

i s. We now proceed by induction on
n, starting with the case n = 2.

If n = 2, write W2 = (W1 ∩W2)⊕ U2, for some U2 ⊆ W2. We can do this since every subspace of a vector space
has a complement, by problem 2. Then

V = W1 +W2 = W1 + (W1 ∩W2) + U2 = W1 + U2.

On the other hand, W1∩U2 = (W1∩W2)∩U2 = 0, thus, W1+W2 = W1+U2 = W1⊕U2. Taking U1 = W1 completes
the proof of the case n = 2.

For n > 2, by induction, we may find U1 ⊆ W1, . . . , Un−1 ⊆ Wn−1, such that for V0 := W1 + · · · + Wn−1,
V0 = U1 ⊕ · · · ⊕ Un−1. On the other hand, by the case n = 2 (and its proof), there exists Un ⊆ Wn such that
V0+Wn = V0⊕Un. Thus, in particular, W1+ · · ·+Wn = V0+Un = U1+ · · ·+Un−1+Un. To see that this latter sum
is direct, suppose u1+ · · ·+un−1+un = 0, with each uj ∈ Uj . We must show each uj = 0. Regarding u1+ · · ·+un−1

as an element of V0, by the directness of the sum V0 ⊕ Un, we have un = 0 and u1 + · · · + un−1 = 0. This latter
equation implies u1 = · · · = un−1 = 0, since V0 is the direct sum of U1, . . . , Un−1. Thus, all uj = 0, and this gives
what we want. □

7. Let T : Fn → Fn be a linear transformation, suppose E ⊆ Fn is the standard basis, and write A = [T ]EE . Suppose
P is an invertible matrix such that P−1AP = D, where D is a diagonal matrix. Let C1, . . . , Cn be the columns of P ,
and set B := {C1, . . . , Cn}. Prove that B is a basis for Fn and [T ]BB = D.

Solution. To see that the set B forms a basis, it suffices to show that C1, . . . , Cn are linearly independent. Suppose

a1C1 + · · · + anCn = 0, with each aj ∈ F . Then P · v = 0, for v =

a1

...
an

. Since P is invertible, multiplying both

sides of this equation by P−1 gives v = 0, and hence C1, . . . , Cn are linearly independent.

For the second statement, we note that P = [I]EB . Thus,

[T ]BB = [I]BE · [T ]EE · [I]EB = P−1AP.

□

8. Let V := M2(C) with inner product ⟨A,B⟩ = trace(At · B). Let W denote the subspace spanned by the single

matrix

(
1 1
1 1

)
. Find an orthonormal basis for W⊥ := {v ∈ V | ⟨v, w⟩ = 0, for all w ∈ W}.

Solution. We first calculate W⊥. We need the set of matrices

(
a b
c d

)
such that

0 = ⟨
(
1 1
1 1

)
,

(
a b
c d

)
⟩ = trace{

(
1 1
1 1

)t

·
(
a b
c d

)
}.

Thus, a + b + c + d = 0, and hence a + b + c + d = 0. Regarding this equation as a system of one equation in four

unknowns, the solution space in C4 has a basis consisting of the vectors


1
−1
0
0

 ,


1
0
−1
0

 ,


1
0
0
−1

. It follows that W⊥

is has basis

(
1 −1
0 0

)
,

(
1 0
−1 0

)
,

(
1 0
0 −1

)
. We leave the details to you to see that applying the Gram-Schmidt

process to these matrices yields

(√
2

2
−

√
2

2

0 0

)
,

( √
6
6

√
6
6

−
√
6

3
0

)
,

(√
3
6

√
3
6√

3
6

−
√
3

2

)
, which form an orthonormal basis for

W⊥. □
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9. Let C =

−4 2 −2
2 −7 4
−2 4 −7

. Find an orthogonal matrix Q such that Q−1CQ is diagonal. Now, let TC : R3 → R3

be the linear transformation whose matrix with respect to the standard basis of R3 is C. Find an orthonormal basis
for R3 consisting of eigenvectors for T .

Solution Outline. χA(x) = (x + 3)2(x + 12). E−3 is the null space of the matrix

−1 2 −2
2 −4 4
−2 4 −4

 which simplifies

to

1 −2 2
0 0 0
0 0 0

 via elementary row operations. From this, one obtains a basis

2
1
0

,

−2
0
1

 for E2. Applying

Gram-Schmidt gives the following orthonormal basis for E−3: u1 :=

 2√
5

1√
5

0

, u2 =


−2

3
√
5

4

3
√
5

5

3
√
5

.

E−12 is the nullspace of the matrix

 8 2 −2
2 5 4
−2 4 5

 which has the unit vector u3 =

 1
3
−2
3
2
3

 for a basis. Note that

u1, u2, u3 is an orthonormal basis for R3 and if Q is the matrix with columns u1, u2, u3, Q is an orthogonal matrix

and satisfies Q−1AQ =

−3 0 0
0 −3 0
0 0 12

.

For the second statement, just take the columns of Q, and use Problem 7. □

10. Assume that V is an inner product space over R and T ∈ L(V, V ) is a linear operator. Show that the conditions
(i)-(iv) below are equivalent. Any T ∈ L(V, V ) satisfying these conditions is called an isometry. This is the operator
analogue of orthogonal matrix.

(i) ||T (u)|| = ||u||, for all u ∈ V .
(ii) ⟨T (v), T (w)⟩ = ⟨v, w⟩, for all v, w ∈ V .
(iii) T takes an orthonormal basis of V to an orthonormal basis.

(iv) [T ]B2
B1

is an orthogonal matrix for all orthonormal bases B1, B2 ⊆ V .

Hint: For (i) implies (ii), try taking u = v − w in (i).

Solution. For (i) implies (ii), it suffices to assume ⟨T (u), T (u)⟩ = ⟨u, u⟩ for all u ∈ V and show ⟨T (v), T (w)⟩ = ⟨v, w⟩,
for all v, w ∈ V . On the one hand, ⟨v − w, v − w⟩ = ⟨T (v − w), T (v − w)⟩, while on the other hand,

⟨v − w, v − w⟩ = ⟨v, v⟩ − ⟨w, v⟩ − ⟨v, w⟩+ ⟨w,w⟩

and

⟨T (v − w), T (v − w)⟩ = ⟨T (v), T (v)⟩ − ⟨T (w), T (v)⟩ − ⟨T (v), T (w)⟩+ ⟨T (w), T (w)⟩.
Thus, since we are working over R, −2⟨v, w⟩ = −2⟨T (v), T (w)⟩, and thus, ⟨v, w⟩ = ⟨T (v), T (w)⟩, which is what we
want.

Now suppose (ii) holds. If {v1, . . . , vn} is an orthonormal basis, then ⟨T (vi), T (vj)⟩ = ⟨vi, vj⟩ = δij , for all i, j showing
that {T (v1), . . . , T (vj)} is an orthonormal basis.

Suppose (iii) holds and B1, B2 ⊆ V are orthonormal bases. We have [T ]B2
B1

= [T ]B2
B2

· [I]B2
B1

, so it suffices to check

that [T ]BB is orthogonal whenever B is an orthonormal basis and [I]B2
B1

is orthogonal since if A = BC, and B,C are
orthogonal then

At = (BC)t = CtBt = C−1B−1 = (BC)−1 = A−1,

showing A is orthogonal. We use the following identity proven in class: For v, w ∈ V , and B ⊆ V an orthonormal
basis, ⟨, v, w⟩ = ⟨[v]B , [w]B⟩, where the first inner product is in V and the second in Rn.

Now suppose B = {v1, . . . , vn} is an orthonormal basis for V and A = [T ]BB . Let C1, . . . , Cn denote the columns of
A. Then,

⟨Ci, Cj⟩ = ⟨[T (vi)]B , T (vj)]B⟩ = ⟨T (vi), T (vj)⟩ = δij ,

since {T (v1, . . . , T (vn)} is an orthonormal basis for V . Thus, the columns of A form an orthonormal basis for Rn,
showing that A is an orthogonal matrix. Therefore, (iii) implies (iv).
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To see that (iv) implies (ii), it is easy to check that one can reverse the argument showing (iii) implies (iv), so we
can assume T takes an orthonormal basis to an orthonormal basis. Let B = {u1, . . . , un} be an orthonormal basis
for V . Take u ∈ V and write u = a1u1 + · · ·+ anun, for aj ∈ R. Then

⟨u, u⟩ = ⟨Σiaiui,Σjajuj⟩ = Σi,jaiai⟨ui, uj⟩ = a2
1 + · · ·+ a2

n = Σi,jaiaj⟨T (ui), T (uj)⟩ = ⟨T (u), T (u)⟩.
Taking square roots we get ||u|| = ||T (u)||, as required. □

Bonus Problems. Each Bonus problem is worth 10 points. Your solution must be completely, or nearly completely,
correct to earn any bonus points.

BP1. Let V be an inner product space over R and S, T commuting, symmetric on V . Prove that there exists an
orthonormal basis B such that [T ]BB and [S]BB are diagonal, i.e., S and T are simultaneously, orthogonally diagonal-
izable.

Solution. Since T is symmetric, its distinct eigenvalues λ1, . . . , λr are in R and V = Eλ1

⊕
· · ·
⊕

Eλr . Moreover,
for all i ̸= j any vector in Eλi is orthogonal to any vector in Eλj . Thus if Bi is an orthogonal basis for Eλi , then
B := B1 ∪ · · · ∪Br is an orthogonal basis for V . Now, take v ∈ Eλi , so that T (v) = λiv. Then

T (S(v)) = TS(v) = ST (v) = S(λiv) = λiS(v).

Thus, S(v) ∈ Eλi . This shows that S takes vectors in Eλi to vectors in Eλi . Thus S|Eλi
∈ L(Eλi , Eλi). It is easy

to check that S|Eλi
is symmetric. Thus, there exists an orthonormal basis Bi consisting of eigenvectors of S|Eλi

. By

definition, Bi consists of eigenvectors for T . Taking B = B1 ∪ · · · ∪ Br gives an orthonormal basis for V consisting
of eigenvectors for both T and S. □

NOTE. Even though S and T in the previous problem have a common set of eigenvectors, the eigenvalues need not
be the same. Indeed, if p(x) is any polynomial in x with coefficients in F , and T (v) = λv. One easily checks that T
and p(T ) commute and p(T )(v) = p(λ)v.

BP2. Let A denote the n× n matrix over R such that every entry of A is 1. Prove that A is diagonalizable.

Solution. The matrix A has rank 1, so that the solution space to the homogenous system of linear equations with
coefficient matrix A has dimension n− 1. In other words, 0 is an eigenvalue of A with geometric multiplicity n− 1.
Thus, the algebraic multiplicity of 0 is at least n− 1. If the algebraic multiplicity of 0 were n, then we would have to
have χA(x) = xn. But An is the n× n matrix whose entries are all n, and thus, we cannot have χA(x) = xn, by the
Cayley-Hamilton theorem. Therefore, χA(x) = xn−1g(x), where g(x) is a monic polynomial of degree one. It follows
that g(x) = (x − λ), for λ ∈ R. Therefore, Eλ has dimension equal to one, since geometric multiplicity is less than
or equal to algebraic multiplicity. Thus, for both eigenvalues of A, the geometric multiplicity equals the algebraic
multiplicity, so A is diagonalizable. □

By the way: The proof did not need the fact that λ = n. Can you prove this?
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