FALL 2024: MATH 790 EXAM 1

Throughout this exam, V' will denote a vector space over the field F'. Unless stated otherwise, we do not assume
that V is finite dimensional. Each problem is worth 10 points. You may use the Daily Update, your notes from class
or any homework you have done, but you may not use any other resources, including your book, any other
book, any information taken from the internet, nor may you consult with any students or professors, other than your
Math 790 professor. You may freely use basic linear algebra facts presented in a first course on linear algebra, but you
may not use any advanced linear algebra facts not presented in class. Please upload your solutions in pdf format
- and no other format - to Canvas by 5pm on Monday, October 7. Good luck on the exam!

1. Let K be a subfield of F'. We can regard F' as a vector space over K, using the addition in F' as vector addition
and multiplication of elements in K times elements in F' (via the given multiplication in F') as scalar multiplication.
Note that any vector space V over F' is automatically a vector space over K. Assume that V is finite dimensional
over F' and F is finite dimensional as a vector space over K. Find and prove a formula that expresses dimg (V) in
terms of dimp (V) and dimg (F'). Hint: It might be helpful to first consider thet case K =R and F = C.
Solution. Let Ai,..., A, be a basis for the field F' regarded as a vector space over the field K and vi,...,v, be a
basis for the vector space V over F. We will show that the set B := {/\Zv]}}ggf is a basis for V over K. Upon
doing so, it will follow that dimg (V) = dimg (F) - dimg(W). o

Now, take v € V. Then we may write v = a1v1 + - - - + AmUm, with each a; € F'. On the other hand, we may write
each a; = fBi1 - A1+ -+ Bin - An, with each 3;; € K. Substituting these latter relations into the first equation, we
get

v=(LraM 4+ F+ Brar)vr + -+ (Bmad + o F B An) U

Expanding out this last identity we see that v =73, ; 8;.i - (Aiv;), which shows that the set B spans V' over K.

Finally, to see that the set B is linearly independent over K, suppose we have a dependence relation ZEZ EIL” Y+
(Aivj) = 0, with each v;,; € K. Then, we may rewrite this equation as T

0= (’Yl,l/\l +---+ 'yl,nAn)vl +---+ (’Ym,1>\1 +---+ 'Vm,n)\n)vm~
Note that the coefficients of the v; in this last equation belong to F. Thus,

0= ’Yl,lAl +---+ 'yl,nAn = /Ym,l)\l + -+ ’Ym,n)\ny
since the v; are linearly independent over F'. Since the A; are linearly independent over K, it follows that all v, ; are
zero, which gives what we want. The proof is now complete. O

2. Let W be a proper subspace of the vector space V. First prove that there exists a subspace U C V that is maximal
with respect to the property that W NU = 0, and then show that V =W & U.

Solution. Let W be a subspace of V. We need to check that the hypotheses of Zorn’s Lemma apply to the set
S :={W'CV | W'is asubspace of V and WNW' = 0}. Note, the partial order on S is just inclusion of subspaces.
For this, we take a chain {W/ };cr in 9, i.e., a totally ordered collection of subspaces {W;} of V with WNW/ = 0, for
all . To find an upper bound for the chain in S, we consider Wy := User W/. As in class, a union of totally ordered
subspaces of V is a subspace of V, so W}, is a subspace of V. Let x € W NW. Since x € W}, € W/, some i. Thus,
x € W/NW =0, since W] € S. Thus, WyNW =0, so W} € S. Therefore, W{ is an upper bound in S for the given
chain. It follows from Zorn’s Lemma that S has a maximal element, say U.

To see that V.= W @ U, we just have to show V = W + U, since we already have W NU = 0. Take v € V. If
v € U, then v € W 4+ U. Suppose v € U. Then Uy := U + (v) is a subspace of V properly containing U, so, by the
maximality of U, UyNW # 0. Let 0 # w € Up N W. Then w = u + av, for some v € U, o € F and w € W. Notice
that o # 0, otherwise, w would be a non-zero vector in W N U. It follows that v = =!(w — u), so that v € W + U,
as required. Thus, V=W +U,so V=W @ U. a

3. Suppose dim(V') equals n > 0. Prove there cannot exist a chain of subspaces (0) C Wi --- C W,, C V. Conclude
that if Uy C Uz C Us C --- is an ascending chain of subspaces of V, then there exists no > 1 such that Us; = U,,, for
all s > ng. In particular, show that if 7' € L(V, V), there exists 1 < r < n such ker(77) = ker(T"), for all j > r.

Solution. The first two statement follow, since given subspaces A C B C V, A C B if and only if dim(A) < dim(B).
For the third statement, suppose kernel(T") = kernel(T" '), for some r > 1. Then kernel(T""7) = kernel(T"), for
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all j > 1. To see this, induct on j. The case j = 1 is true by assumption. Suppose the result is true for j — 1.
We want to show kernel(T7) = kernel(T"). Take v € kernel(TY), so that T9(v) = 0. Then TV~ (T(v)) = 0, so
T(v) € kernel(TV~1). Thus, T(v) € kernel(T"). Therefore T" (T (v)) = 0, so T""!(v) = 0. By hypothesis, T"(v) = 0,
which is what we want. Now, because we cannot have more than n strict containment of subspaces in V, we must
have kernel(T") = kernel(T" 1), for sone 1 < r < n. |

4. Using the ideas of the previous problem, show that if dim(V) =n, and T € L(V, V), then V = ker(T™) @ im(T").

Solution. We first show that for all j > 1, image(T"77) = image(T") = - - -, for the r found in the previous problem
such that such that kernel(T") = kernel(T777). For this, since kernel(T"1?) = kernel(T"), these spaces have the
same dimension. By the Rank Plus Nullity theorem, image(7""7) and image(T") have the same dimension. Since
image(T" ") C image(T"), these subspaces must be equal.

Now, we note that kernel(7T") Nimage(T™) = 0. To see this, take v € kernel(T™) Nimage(T™), so that T"(v) = 0 and
v=T"(v"), for some v" € V. Then 0 = T"(v) = T*"(v'), so that v’ € kernel(T>") = kernel(T") = kernel(T™). Thus,
v =T"(v") = 0. To see that V = kernel(T™) + image(T"), take v1,...,vs a basis for kernel(T") and w1,...,u; a
basis for image(T"). By the Rank Plus Nullity Theorem, s 4+t = n. If we show that v1,...,v2,u1,...,u; are linearly
independent, then they form a basis for V. Thus,

V = Span{wv1,...,vs} + Span{ua,...,u; } = kernel(T™) + image(T"),

which gives what we want. Suppose ai1v1 + - -+ + asv2 + baui + - - - + byuy = 0, for a;,b; € F. Then

a1v1 + 0+ asVs = —brur — -+ — bruy.
This vector belongs to kernel(T™) Nimage(T™) = 0, so we have a1v1 +---+asvs = 0 and 0 = —byus — - - - — byus.. Since
the v; are linearly independent, each a; = 0 and since the u; are independent, each b; = 0. This shows vy, ..., u; are
linearly independent, which is what we want. |

5. Let V' be a vector space of dimension n over the field F'.
(i) Prove that the vector spaces £(V,V) and M, (F) are isomorphic.
(ii) Using the Cayley-Hamilton theorem for matrices, prove that xr (1) =0, for T € L(V, V).
(iii) For f(z) € [z], with s the degree of f(z), prove that |zI, — C(f(z))| = f(z), where C(f(z)) is the companion
matrix of f(z). In other words xc(f(a)) () = f(x).

Solution. For part (i), one can either note that each space in question has dimension n?, and then use the fact that
vector spaces of the same dimension are isomorphic, or one can explicitly exhibit an isomorphism. In the first case,
fix a basis B = {v1,...,v,} for V. Define Tj; : V. — V by Tj;(vi) = v; and T;;(vi) = 0, for k # 4. One shows that
{Ti;} is a basis for L(V, V). Similarly, one defines E;; € M, (F) to be the matrix with (¢, j) entry equal to 1 and all
other entries equal to zero. Then {E;;} is a basis for M,,(F). Both bases have n? elements. In the second case one
defines ¢ : L(V,V) — M, (F) by ¢(T) = [T]5 and easily checks that ¢ is an isomorphism.

For (ii), let T € £(V,V), fix a basis B C V and set A := [T]5. Then, by definition, xa(z) = x7(z). To see that
x7(T) = 0, we first need an observation: Suppose p(z) € F[z]. Then [p(T)]5 = p([T]5). This observation follows
easily from two facts: [ST|E = [S|B[T]Z, for all S,T € L(V,V) and [aS + bT|E = a[S]E + b[T|E, for all a,b € F.
Thus,

0= xa(4) = xr(4) = xr([T13) = [xr (D)3,

which implies that x7(7T") = 0, since a linear transformation is zero, if it is zero on all elements of a basis.

T 0 o --- 0 ao
-1 T 0 0 a1
For part (iii), set C' := C(f(z)). Then xc(x) = o -1 =z - 0 az . Expanding along the first row,
0 0 O -1 z+an—
we get
T 0 0 0 a1 1 0 0
—1 x 0 0 as
0 1 0 . 0 -1 =z 0
xe@) =z-|0 —1 @ a5 |4 (—1)"ag . ,
0 0 0 - —1 z+an 000 !

where the determinant on the left is the determinant one calculates for the characteristic polynomial of C(g(z)),
for g(z) = 2" ' 4+ an_12" "% 4+ .-+ 4+ a1, which, by induction on n is g(z). The determinant on the right is an
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(n — 1) x (n — 1) upper triangular matrix with -1 down the diagonal, and thus equals, (—1)"~'. Tt follows that
xc(z) = zg(z) + a0 = f(z), as required. O

6. Let Wy,..., W, CV be subspaces and assume V = W; + --- + W,,. Prove that there exists » < n and subspaces
Ui, € Wiy,...,U;, CW;, such that V =U;, @ --- @ Us;,.. Note: we are not assuming that V' is finite dimensional.
Hint: Consider the n = 2 case first. Hint 2: This can be done using bases, but there is an easier way without
appealing to bases.

Solution. In order to prove that there exist subspaces Uy C Wh,...,U, C W, such that V =U1 @ --- @& U,, we first
discard any redundant W;. In other words, if some W; C Wy +--- 4+ W;_1 + W;41+-- -+ W, we may discard it and
take U; = 0. Thus, after finitely many such steps, we may begin again (after a change in notation) and assume that
there are no redundancies, i.e., V is not the sum of any proper subset of the W/s. We now proceed by induction on
n, starting with the case n = 2.

If n = 2, write Wa = (W1 N W) & Us, for some Uz C Wa. We can do this since every subspace of a vector space
has a complement, by problem 2. Then

V=Wi+We=W;+(Wi1NWs)+ Uz =W; + Us.

On the other hand, Wi NUz = (W1 NW2)NU2 = 0, thus, W1 +Ws = Wi + Uz = W1 @ U,. Taking Uy = Wi completes
the proof of the case n = 2.

For n > 2, by induction, we may find Uy C Wi,...,Up—1 C W,_1, such that for Vo := Wi + -+ + W1,
Vo = U1 @ -+ ®Un—1. On the other hand, by the case n = 2 (and its proof), there exists U, C W, such that
Vo+ W, = Vo®U,. Thus, in particular, Wi +---+W,, = Vo +U,, = Ui +---+U,—1 +U,. To see that this latter sum
is direct, suppose u1 + - - - +uUn—1 +un = 0, with each u; € U;. We must show each u; = 0. Regarding w1+ -+ un—1
as an element of Vp, by the directness of the sum Vp & U, we have u,, = 0 and u1 + -+ + un—1 = 0. This latter
equation implies u; = -+ = up—1 = 0, since Vp is the direct sum of Ui,...,U,—1. Thus, all u; = 0, and this gives
what we want. O

7. Let T : F™ — F™ be a linear transformation, suppose E C F™ is the standard basis, and write A = [T]%. Suppose
P is an invertible matrix such that P"*AP = D, where D is a diagonal matrix. Let C1, ..., C, be the columns of P,
and set B := {C1,...,Cy,}. Prove that B is a basis for F™ and [T]5 = D.

Solution. To see that the set B forms a basis, it suffices to show that C4,...,C, are linearly independent. Suppose
ai

a1C1 + -+ + anCy = 0, with each a; € . Then P-v =0, forv= | . [. Since P is invertible, multiplying both
an

sides of this equation by P~! gives v = 0, and hence Ci, ..., C, are linearly independent.

For the second statement, we note that P = [I]%. Thus,
115 = U]z - [T]E - [1]g = P AP.
|
8. Let V := M2(C) with inner product (A, B) = trace(A’ - B). Let W denote the subspace spanned by the single
matrix (1 }) Find an orthonormal basis for W+ := {v € V | (v,w) =0, for all w € W}.

Solution. We first calculate W*. We need the set of matrices ((z b) such that

d

= e ) E D

Thus, @+ b+ ¢+ d = 0, and hence a + b+ ¢+ d = 0. Regarding this equation as a system of one equation in four

1 1 1
unknowns, the solution space in C* has a basis consisting of the vectors _0 , 701 , 8 . It follows that W+
0 0 -1
. . (1 -1 1 0 1 0 . . .
is has basis o o) \Z1 o)l Z1) We leave the details to you to see that applying the Gram-Schmidt
V2 V2 V6 /6 V3 V3
process to these matrices yields ( (2) 2 ) , _6@ 8 , & _6§ , which form an orthonormal basis for
3 6 2

w+t. O



-4 2 =2
9. Let C=[ 2 -7 4 |. Find an orthogonal matrix Q such that Q~*CQ is diagonal. Now, let Tc : R® — R3
-2 4 -7
be the linear transformation whose matrix with respect to the standard basis of R® is C. Find an orthonormal basis
for R® consisting of eigenvectors for T

-1 2 =2
Solution Outline. x4(z) = (z + 3)*(z + 12). E_3 is the null space of the matrix | 2 —4 4 | which simplifies
-2 4 -4
1 -2 2 2 -2
to |0 0 0] via elementary row operations. From this, one obtains a basis |1 |, 0 for F2. Applying
0 0 O 0 1
2 —2
V5 3y5
Gram-Schmidt gives the following orthonormal basis for E_3: u; := % yu2 = | 35
5
0 BV
8 2 -2 3
E_42 is the nullspace of the matrix 2 5 4 which has the unit vector us = _?2 for a basis. Note that
-2 4 5 B
u1, U2, u3 is an orthonormal basis for R? and if Q is the matrix with columns w1, us,us, Q is an orthogonal matrix
-3 0 0
and satisfies QT'AQ=( 0 -3 0
0 0 12
For the second statement, just take the columns of ), and use Problem 7. a

10. Assume that V' is an inner product space over R and 7' € £L(V,V) is a linear operator. Show that the conditions
(i)-(iv) below are equivalent. Any T' € L(V, V) satisfying these conditions is called an isometry. This is the operator
analogue of orthogonal matrix.

1) [|IT(w)]| = ||ul], for all u € V.

(ii) (T (v), T(w)) = (v, w), for all v,w € V.

(iii) T takes an orthonormal basis of V' to an orthonormal basis.

(iv) [T]gf is an orthogonal matrix for all orthonormal bases B1, B2 C V.
Hint: For (i) implies (ii), try taking u = v — w in (i).
Solution. For (i) implies (ii), it suffices to assume (T'(u),T'(u)) = (u, u) for all uw € V and show (T'(v), T'(w)) = (v, w),
for all v,w € V. On the one hand, (v —w,v —w) = (T'(v — w), T(v — w)), while on the other hand,

(v—w,v—w) = (v,v) — (w,v) — (v,w) + (w,w)
and
(T(v=w), T(v—w)) =(T(v), T(v)) = (T(w),T(v)) = (T(v), T(w)) + (T(w), T(w)).
Thus, since we are working over R, —2(v,w) = —2(T'(v), T'(w)), and thus, (v,w) = (T'(v),T(w)), which is what we
want.
Now suppose (ii) holds. If {v1,...,vs} is an orthonormal basis, then (T'(v;), T'(v;)) = (vi, v;) = 05, for all ¢, j showing
that {T'(v1),...,T(v;)} is an orthonormal basis.
Suppose (iii) holds and B;, Bo C V are orthonormal bases. We have [T}gf = [T } [I]B17 so it suffices to check
that [T]5 is orthogonal whenever B is an orthonormal basis and [I ]gf is orthogonal since if A = BC, and B, C are
orthogonal then
A'=(BC)'=C'B'=Cc™'B™' =(BO)"' =47,

showing A is orthogonal. We use the following identity proven in class: For v,w € V, and B C V an orthonormal
basis, {,v,w) = ([v]B, [w]B), where the first inner product is in V and the second in R".

Now suppose B = {v1,...,v,} is an orthonormal basis for V and A = [T]5. Let Ci,...,C, denote the columns of
A. Then,
(Ci, C3) = ([T (vi)] B, T (v))]B) = (T(v:), T(v5)) = bij,
since {T'(v1,...,T(vn)} is an orthonormal basis for V. Thus, the columns of A form an orthonormal basis for R™,
showing that A is an orthogonal matrix. Therefore, (iii) implies (iv).
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To see that (iv) implies (ii), it is easy to check that one can reverse the argument showing (iii) implies (iv), so we
can assume T takes an orthonormal basis to an orthonormal basis. Let B = {u1,...,un} be an orthonormal basis
for V. Take u € V and write u = a1u1 + - - - + anUn, for a; € R. Then

(u,u) = (Ssasus, $ia5u5) = i jasai(us, ug) = ai + -+ ap = S jaia; (T(w:), T(uy)) = (T(u), T(w)).
Taking square roots we get ||u|| = ||T'(u)]|, as required. O

Bonus Problems. Each Bonus problem is worth 10 points. Your solution must be completely, or nearly completely,
correct to earn any bonus points.

BP1. Let V be an inner product space over R and S,T commuting, symmetric on V. Prove that there exists an
orthonormal basis B such that [T]5 and [S] are diagonal, i.e., S and T are simultaneously, orthogonally diagonal-
izable.

Solution. Since T is symmetric, its distinct eigenvalues A1,..., A, are in R and V = E\, @ -- @ E\,.. Moreover,
for all ¢ # j any vector in Ej, is orthogonal to any vector in E,;. Thus if B; is an orthogonal basis for E,;, then
B := B; U---U B, is an orthogonal basis for V. Now, take v € E),, so that T'(v) = A\jv. Then

T(S(v)) =TS (w) = ST(v) = S(Aiv) = XA:S(v).
Thus, S(v) € Ex;. This shows that S takes vectors in Ej; to vectors in Ex,. Thus S|, € L(Ex,;, Ex,). It is easy
to check that S‘EX is symmetric. Thus, there exists an orthonormal basis B; consisting of eigenvectors of S‘EA» . By

definition, B; consists of eigenvectors for T'. Taking B = By U --- U B, gives an orthonormal basis for V consisting
of eigenvectors for both 7" and S. a

NOTE. Even though S and T in the previous problem have a common set of eigenvectors, the eigenvalues need not
be the same. Indeed, if p(x) is any polynomial in z with coefficients in F, and T'(v) = Av. One easily checks that T’
and p(T") commute and p(T")(v) = p(A)v.

BP2. Let A denote the n X n matrix over R such that every entry of A is 1. Prove that A is diagonalizable.

Solution. The matrix A has rank 1, so that the solution space to the homogenous system of linear equations with
coefficient matrix A has dimension n — 1. In other words, 0 is an eigenvalue of A with geometric multiplicity n — 1.
Thus, the algebraic multiplicity of 0 is at least n — 1. If the algebraic multiplicity of 0 were n, then we would have to
have xa(z) = z™. But A" is the n X n matrix whose entries are all n, and thus, we cannot have x4 (z) = z", by the
Cayley-Hamilton theorem. Therefore, x4 (z) = ™ 'g(z), where g(x) is a monic polynomial of degree one. It follows
that g(x) = (x — A), for A € R. Therefore, Ex has dimension equal to one, since geometric multiplicity is less than
or equal to algebraic multiplicity. Thus, for both eigenvalues of A, the geometric multiplicity equals the algebraic
multiplicity, so A is diagonalizable. O

By the way: The proof did not need the fact that A = n. Can you prove this?

w



